Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation.

نویسندگان

  • Mei Yee Koh
  • Bryant G Darnay
  • Garth Powis
چکیده

The hypoxia-inducible factor 1alpha (HIF-1alpha) is the master regulator of the cellular response to hypoxia. A key regulator of HIF-1alpha is von Hippel-Lindau protein (pVHL), which mediates the oxygen-dependent, proteasomal degradation of HIF-1alpha in normoxia. Here, we describe a new regulator of HIF-1alpha, the hypoxia-associated factor (HAF), a novel E3-ubiquitin ligase that binds HIF-1alpha leading to its proteasome-dependent degradation irrespective of cellular oxygen tension. HAF, a protein expressed in proliferating cells, binds and ubiquitinates HIF-1alpha in vitro, and both binding and E3 ligase activity are mediated by HAF amino acids 654 to 800. Furthermore, HAF overexpression decreases HIF-1alpha levels in normoxia and hypoxia in both pVHL-competent and -deficient cells, whereas HAF knockdown increases HIF-1alpha levels in normoxia, hypoxia, and under epidermal growth factor stimulation. In contrast, HIF-2alpha is not regulated by HAF. In vivo, tumor xenografts from cells overexpressing HAF show decreased levels of HIF-1alpha accompanied by decreased tumor growth and angiogenesis. Therefore, HAF is the key mediator of a new HIF-1alpha-specific degradation pathway that degrades HIF-1alpha through a new, oxygen-independent mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia-inducible factor-1 (HIF-1).

Adaptation to low oxygen tension (hypoxia) in cells and tissues leads to the transcriptional induction of a series of genes that participate in angiogenesis, iron metabolism, glucose metabolism, and cell proliferation/survival. The primary factor mediating this response is the hypoxia-inducible factor-1 (HIF-1), an oxygen-sensitive transcriptional activator. HIF-1 consists of a constitutively e...

متن کامل

Cancer-causing mutations in a novel transcription-dependent nuclear export motif of VHL abrogate oxygen-dependent degradation of hypoxia-inducible factor.

It is thought that degradation of nuclear proteins by the ubiquitylation system requires nuclear-cytoplasmic trafficking of E3 ubiquitin ligases. The von Hippel-Lindau (VHL) tumor suppressor protein is the substrate recognition component of a Cullin-2-containing E3 ubiquitin ligase that recruits hypoxia-inducible factor (HIF) for oxygen-dependent degradation. We demonstrated that VHL engages in...

متن کامل

Tumor and Stem Cell Biology The Hypoxia-Associated Factor Switches Cells from HIF-1a– to HIF-2a–Dependent Signaling Promoting Stem Cell Characteristics, Aggressive Tumor Growth and Invasion

Most solid tumors and their metastases experience periods of low oxygen or hypoxia, which is of major clinical significance as it promotes both tumor progression and resistance to therapy. Critical mediators of the hypoxic response are the hypoxia-inducible factors HIF-1a and HIF-2a. The HIFs are nonredundant and regulate both overlapping and unique downstream target genes. Here, we describe a ...

متن کامل

RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2α

Hypoxia-inducible factors (HIFs) are critical transcription factors that mediate cell survival during reduced oxygen conditions (hypoxia). At regular oxygen conditions (normoxia), HIF-1alpha and HIF-2alpha are continuously synthesized in cells and degraded via the ubiquitin-proteasome pathway. During hypoxia, these proteins are stabilized and translocate to the nucleus to activate transcription...

متن کامل

mAKAP compartmentalizes oxygen-dependent control of HIF-1alpha.

The activity of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha) is increased in response to reduced intracellular oxygen. Enzymes of the protein ubiquitin machinery that signal the destruction or stabilization of HIF-1alpha tightly control this transcriptional response. Here, we show that muscle A kinase-anchoring protein (mAKAP) organized ubiquitin E3 ligases that managed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 28 23  شماره 

صفحات  -

تاریخ انتشار 2008